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SUMMARY

Synthetic data generation is the process of using machine learning methods to
train a model that captures the patterns in a real dataset. Then new or synthetic
data can be generated from that trainedmodel. The synthetic data does not have
a one-to-one mapping to the original data or to real patients, and therefore has
the potential of privacy preserving properties. There is a growing interest
in the application of synthetic data across health and life sciences, but to fully
realize the benefits, further education, research, and policy innovation is
required. This article summarizes the opportunities and challenges of SDG for
health data, and provides directions for how this technology can be leveraged
to accelerate data access for secondary purposes.

INTRODUCTION

Understanding the opportunity to leverage health data for innovation and care improvement has been a

topic of discussion for decades. AI and machine learning (ML) have opened exciting opportunities to

harness data within health systems to provide decision support tools to clinicians, develop better treat-

ments, and improve system efficiencies. However, significant barriers to widespread innovation and adop-

tion exist. Because ML applications are data intensive, there is a need to address the challenge of data

access.

Privacy concerns are key barriers to health data sharing and data access (van Panhuis et al., 2014), (Kalkman

et al., 2019). In the case of published studies, one option is to request datasets directly from their authors,

but such data availability is poor (Read et al., 2021). An analysis of the ability to obtain individual level data

for research projects from authors of published articles found that the percentage of the time these efforts

were successful varied significantly and was generally low (Bauchner et al., 2016) at 58% (Polanin, 2018), 46%

(Naudet et al., 2018), 14% (Villain et al., 2015), and 0% (Ventresca et al., 2020). Particularly in EEA countries

where the EU General Data Protection Regulation (GDPR) imposes high standards for data sharing that are

often difficult to meet in practice (Rabesandratana, 2019), (Bentzen et al., 2021). This raises a particular chal-

lenge given that the GDPR is serving as a template regulation around the globe (Bentzen et al., 2021).

Recently, the Public Health Agency of Canada (2022) identified that a ‘‘privacy chill’’, a slowing or complete

restriction on health data sharing, has a significant negative impacts on response to the COVID-19

pandemic, and on Canada’s ability to recruit and retain talented health data scientists who can’t access

the data they need to undertake their research (Public Health Agency of Canada, 2021). Technical ap-

proaches to enhancing and protecting privacy can help health data stewards overcome ‘‘privacy chill’’,

and share data for secondary purposes. Synthetic data approaches are one such tool.

In November 2021, CIFAR (Canadian Institute for Advanced Research), IVADO (Institute for Data Valoriza-

tion) and Mila (Montreal Institute for Learning Algorithms) organized a Synthetic Data for Health sympo-

sium and workshop to explore the opportunities and challenges of deploying synthetic data approaches

across a spectrum of applications in medical research and training, including imaging, genomics, neuro-

physiology, epidemiology and clinical applications. Synthetic data generation (SDG) is the process of using

ML methods to train a model that captures the patterns in a real dataset. Then new, or synthetic, data can

be generated from that trained model. The synthetic data, if properly generated, does not have a one-to-

one mapping to the original data or to real patients, and therefore has the potential of privacy-preserving

properties.
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The discussions at the symposium indicated that there is a growing interest in the application of synthetic

data across health and life sciences, but that to fully realize the benefits, further education, research, and

policy innovation is required. This article summarizes the opportunities and challenges of SDG for health

data as raised during the symposium followed by a case study about synthetic PET scans, and provides di-

rections for how this technology can be leveraged to accelerate data access for secondary purposes.

OPPORTUNITIES

Promoting data sharing

In many instances sharing real (i.e., non-synthetic) data for secondary purposes is challenging due to reg-

ulatory requirements or ethical concerns which can lead to overly-cautious or protective interpretations,

which can lead to delays in dataset sharing or access approvals. Synthetic data could be an attractive alter-

native. When synthetic data is created with the intent to mimic a given real dataset, it can hold valuable

information from the real data such as feature correlations and parameter distributions. Furthermore, it

can be used to train statistical models, perform hypothesis-generating studies or simply provide data ex-

amples for educational purposes.

In recent years, SDG has made tremendous progress, especially from deep learning generative models.

These gains are particularly impressive in the computer vision domain where everyday images can now

be generated with strikingly realistic features (Karras et al., 2018), (Dhariwal and Nichol, 2021) and in lan-

guage generation where realistic text can be written by so-called large language models (Hutson, 2021).

Less present in the current news but just as important in medicine are tabular and time series generation

with notable applications for electronic health records and biometric measurements (Seyfi et al., 2022).

Additionally, related methods also address multi-modal data generation. Sharing synthetic data can

help produce more generalizable analyses and facilitate their reproducibility when real data sharing is

not feasible.

Protecting privacy

Although there is no single definition of privacy, the general concept is relatively simple: It defines the level

of ‘‘protection’’ against unexpected access to some potentially sensitive information about specific individ-

uals. Patient information is considered highly sensitive and the risks have been traditionally addressed with

de-identification methods. However, these methods have proven to be vulnerable to privacy leaks (Swee-

ney, 2002), (Rocher et al., 2019), (Mandl and Perakslis, 2021). Most synthetic data approaches aim to repro-

duce populations rather than individuals, with no direct link between individuals in a synthetic sample and

individuals in a real sample. While these methods have some challenges as detailed below, if done

correctly, synthetic data can be an important tool for data sharing and reducing risks of privacy leaks. A

recent model of meaningful identity disclosure risk has shown that synthetic data generated from clinical

data can provide 4–5x greater protection against identity disclosure than the real population dataset, fall-

ing well below a generally accepted risk threshold (El Emam et al., 2020a). As privacy is always tied to legal

issues and how it is (or is not) enforced by laws, we suggest the following introductions of the relationship

between synthetic data and the legal landscape, (Bellovin et al., 2018), (El Emam et al., 2020b).

Data augmentation

Datasets for medical applications are often limited in size because data collection and annotation typically

requires the participation of highly trained experts. To address such limitations, data augmentation is a set

of techniques to increase the size of a dataset without collecting and annotatingmore real data. SDG is one

such technique and can optimize the statistical information extraction from the real data (Levine et al.,

2020), (Nalepa et al., 2019). In its most basic implementation, SDG for data augmentation requires mixing

real and synthetic data within the training set of someML model. For example, the authors of (Levine et al.,

2020) have trained a neural network to diagnose different types of ovarian cancer. When synthetic data was

added to the training set of real data, the authors claim that the model diagnosis performs as well as a

model trained on the real dataset supplemented with more real images.

Increasing the contribution of underrepresented populations

Small groups of a diverse population may be penalized by ML algorithms in the form of bias. For example,

the ubiquitous task of image classification in deep learning results in poor performance when a model is

trained on datasets with imbalanced classes (Buda et al., 2018), i.e. one or more classes are significantly
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underrepresented in the dataset. The errors on the majority class can overwhelm and mask those on the

minority classes (Ali et al., 2015). A proposed approach to improve the contribution of an underrepresented

group is through data augmentation as mentioned above. The data augmentation of underrepresented

groups can lead to improved performance of a model on each subgroup (Rajotte et al., 2021), (Chen

et al., 2021). For instance, the authors of Chen et al., (2021) have shown that they can improve the detection

accuracy of a rare subtype of renal cell carcinoma by adding synthetic histology images to the training data-

set of the detector.

CHALLENGES

Assessing quality

Assessing medical synthetic data is an active research topic and many metrics are proposed. Such metrics

however, can often be categorized within three qualities: fidelity, diversity and generalization (Alaa et al.,

2022).

Fidelity corresponds to the quality of the samples: can they be distinguished from real samples and can

valid population inferences be made from the synthetic samples? The validity of such inferences is often

referred to as utility and is used as a narrow evaluation of fidelity (Abadi et al., 2016), (Rajotte et al.,

2021), (Bergen et al., 2022), (Beaulieu-Jones et al., 2019). More generally, there are two common options

for fidelity metrics, computational and human evaluation. Computationally, one can define a distance be-

tween the distribution of the real data and the distribution of the synthetic data (e.g. Frechet Inception Dis-

tance for images (Heusel et al., 2017) and Hellinger distance for tabular data (El Emam et al., 2022)), or

compare statistical model parameter estimates and confidence intervals between the two. It is also a com-

mon practice to evaluate the fidelity of the data by asking experts to tell whether a sample is real or syn-

thetic and to report their frequency of success (Salim, 2018), (Beaulieu-Jones et al., 2019), (Choi et al.,

2017). Diversity corresponds to the coverage of the real data population: Is a subgroup underrepresented

with respect to the original data? Generalization is related to privacy: are the data samples copies of

the real data? This question is detailed below, but privacy assessment metrics come in two categories:

empirical (through privacy attacks) and formal (from the generation method). These three qualities must

be met to a degree determined by the stakeholder and it may be necessary to trade-off one value against

another.

Implementing and assessing privacy

ManyML techniques may lead to a false sense of privacy and SDG is no exception. In general, the privacy of

any ML products can be assessed empirically after training with privacy attacks (Murakonda and Shokri,

2020). These attacks can take many forms. Notable ones are data extractions (Carlini et al., 2021), model

inversions (Fredrikson et al., 2015) and Membership Inference Attacks (MIA) (Shokri et al., 2017), (Carlini

et al., 2022), (Liu et al., 2020). Privacy evaluations of synthetic datasets are usually performed through

MIA because of their simplicity and their effectiveness corresponds to an upper bound on privacy. For

SDG, MIA receives as input either a synthetic dataset or the model that generated the synthetic data

and the attack predicts if a data sample was used for training the SDG model. One must be careful

when reporting privacy attack performance metrics, which are often an average-case measure (e.g. accu-

racy of the membership predictions). As noted and addressed in (Carlini et al., 2022): ‘‘If an MIA can reliably

violate the privacy of even just a few users in a sensitive dataset, it has succeeded. And conversely, an attack

that only unreliably achieves high aggregate attack success rate should not be considered successful’’. To

address this, the authors propose to use MIA’s true positive rate at low false positive rate as a metric of suc-

cess, but more generally one could consider creating a metric tailored to the use case.

Another important element to take into consideration is what will be shared about the generation process.

On the one hand, it is common in the ML community to share a fully trained SDG model for reproducibility

and validation purposes, hence favoring transparency. Furthermore, a fully trained model allows the gen-

eration of an unlimited quantity of synthetic data (although the utility of a dataset will not be improved

beyond a certain amount of synthetic data added). On the other hand, releasing a fully trained SDGmodel

increases privacy risks. Even releasing an untrained SDG model (i.e. the code) makes the synthetic data

more vulnerable because many privacy attacks are based on training ‘‘shadow’’ models which are more

effective if they are identical to the actual model used for SDG (Shokri et al., 2017), (Carlini et al., 2022).

Since there is a transparency benefit in releasing all the components at the cost of reduced privacy, one

has to face a privacy-transparency trade-off.
iScience 25, 105331, November 18, 2022 3
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Federated learning (FL) is often proposed as a privacy preserving alternative for learning algorithms while

keeping the sensitive real data local (Rieke et al., 2020). Synthetic data can be created with FL frommultiple

sites (e.g., hospitals) while keeping the sensitive real data locally. One could conceive a worldwide imple-

mentation of such a setting where each site would coordinate with a country, enabling the creation of a

synthetic dataset representative of the whole world population or representative of all humans hospitalized

or treated for a given condition, such as heart failure or depression. However, FL could also lead to a false

sense of privacy if implemented without caution. Indeed, there are many methods demonstrating the pri-

vacy vulnerability of exchanging the parameter updates of a model trained on private data, see (Melis et al.,

2019), (Zhu et al., 2019) and (Boenisch et al., 2021) for some examples.

The only privacy protection with a predictable degree of privacy for SDG is to include differential privacy

(Dwork et al., 2006), (Abadi et al., 2016) (DP) where randomization is added to the learning process to bound

the effect of individual patient training records. However, DP in general (i.e. not only applied to SGD) is not

a panacea and its implementation is often challenging (Garfinkel et al., 2018) and has received some crit-

icism (Bowen and Garfinkel, 2021). Furthermore, it was shown in a survey (Jordon et al., 2022) that industry

players struggle to trust any theoretical privacy claims such as DP without empirical evidence. It is safe to

assume that this trust would also need empirical support in medicine.
Balancing utility and privacy

Producing ‘‘good’’ synthetic data often comes at a privacy cost. This is usually referred to as the privacy-

utility trade-off and also affects non-synthetic dataanonymization methods. For example, a popular pri-

vacy-preserving method, k-anonymization (Sweeney, 2002), reduces data precision such that individuals

cannot be singled out. As mentioned above, DP is the only method with formal guaranteed privacy pro-

tection, but it often comes at a high and unpredictable utility reduction (Stadler et al., 2022). Moreover,

there are examples of DP implementation that could be considered as privacy-washing, where the pri-

vacy parameters are adjusted for good utility but leading to essentially no privacy protection while

benefiting from DP’s reputation of being the best privacy approach (Domingo-Ferrer et al., 2021). There

are also other methods for creating synthetic data that demonstrate privacy improvement empirically,

e.g., (Mukherjee et al., 2021). Furthermore, the authors of (Stadler et al., 2022) demonstrated empirically

that it is challenging to predict what data characteristics will be preserved through well knownSDG

methods nor is it possible to anticipate the minimum gain in privacy or utility loss. There is, however,

promising work addressing the challenge of controlling both privacy and utility in SDG in a mathemat-

ically rigorous way, see (Boedihardjo et al., 2022). Outliers are a particularly clear example of this trade-

off because of their fundamental difficulty to be statistically captured based on their uniquely identifying

features. If the utility is based on learning from outliers, then a useful and private SDG will be chal-

lenging, see (Oprisanu et al., 2022) for a demonstration in SDG of genomic data. Therefore, an ideal pri-

vate synthetic dataset is created by solving the privacy-utility trade-off (see Figure 1) optimized to the

needs of all the stakeholders.
Avoiding bias magnification from the real data

Most SDG is based on a given real dataset. Real datasets come with their own biases accumulated in the

whole data production pipeline: from data collection to data curation (Jo and Gebru, 2020). Synthetic data,

like any ML models, will inherit the biases of the data it is based on and potentially magnify them (Torralba

and Efros, 2011), (Tommasi et al., 2015). For example, a group underrepresented in the real data might be

completely ignored by the SDG process by overgeneralization. Another source of bias is the correlation

fallacy, i.e. confusing correlation with causation. Biases should be assessed as much as possible before

the release of synthetic dataset, for example by evaluating the quality across subgroups. The evaluation

of bias and fairness of a dataset is an active research topic.
CASE STUDY

Our case study demonstrates some of the opportunities and challenges described above focusing on the

privacy-utility trade-off. It involves SDG without explicit privacy protection in the training process. Hence,

the privacy of the synthetic data is tested empirically with an MIA on the trained SDG model which should

not be considered as a privacy guarantee, but an upper bound on privacy as mentioned above. The privacy

results are meant as an empirical demonstration of the privacy-utility trade-off.
4 iScience 25, 105331, November 18, 2022



Figure 1. Synthetic data approaches improve the trade-off between privacy and utility

A well-crafted synthetic dataset would lie above the acceptable trade-off line as opposed to either the original or de-

identified data.
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The data to be synthesized are 3D head and neck PET images including a tumor mask based on the

HECKTOR dataset (Oreiller et al., 2022). The 3D images are composed of 2D transversal slides along the

patient’s vertical axis. To create synthetic 3D images, we have used the Transversal GAN model (Bergen

et al., 2022), where the 3D PET generation is conditioned by a tumor mask. Figure 2 shows examples of

a real and a synthetic slide with corresponding tumor masks overlaid. The purpose of the original dataset

is to train a tumor segmentation model. Hence, we define the utility as the performance of a segmentation

model trained on the synthetic data. The utility metric is the DICE score, a common performance metric for

tumor segmentation.

We use two definitions of privacy which were discussed above, one as an average case of the MIA success

and the other at a low false positive rate (2%).The average case privacy is determined from the re-identifi-

cation accuracy of an MIA attack on the SDG model. The low false positive rate privacy is determined from

the true positive rate of re-identification. Based on these definitions, we have produced the privacy-utility

trade-off curve shown in Figure 3. Each value on this plot corresponds to a different number of training it-

erations of our SDG model. It is well known that the more training iterations on a dataset, the better the

model is until a certain point where it ‘‘overfits’’ the training data. This overfitting is a major cause of privacy

leakage. This privacy-utility plot can be used to decide at which iteration a model has been trained enough

to satisfy both privacy and utility requirements. In our case study, the DICE score of 0.66, before the privacy

steep drop, is to be compared with the 0.7 DICE score of a model trained on the real data.

This case study shows how the number of training iterations could be used to find an optimal model to

create a synthetic dataset within acceptable (empirical) privacy and utility bounds. These results however,

do not cover all the elements that evaluation needed for a synthetic dataset. Indeed, beyond the privacy

and utility metrics mentioned above, further evaluation should be performed to make sure that any sub-

groups are not over penalized. A reduced utility for a given subgroup could originate from a diversity lim-

itation often affecting GAN-based SDGwhich is known as mode collapse, a failure case where the synthetic

data contains less variety than the original data, see (Han et al., 2018) for an example in a medical SDG. The

transversal GAN paper (Bergen et al., 2022) explores this issue by comparing the distributions of multiple

radiomic features calculated over the segmentations of the real and synthetic tumors. In addition, if any

further downstream tasks such as classification or clustering are relevant to the synthetic data, it is worth

defining utility metrics and including them in the evaluation.

FUTURE DIRECTIONS AND RECOMMENDATIONS

There are many important applications of SDG to health data, including for training and education

in clinical data sciences (James et al., 2021), and the development and testing of new ML-based clinical
iScience 25, 105331, November 18, 2022 5



Figure 2. Examples of real and synthetic PET images with tumor masks overlaid in red

Each column shows the synthetic image generated by a tumor mask and the real PET image corresponding to the same

tumor mask.
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decision-support tools. Synthetic data approaches are an important set of tools to help protect patient pri-

vacy, augment small datasets, and reduce bias against subgroups.

Reflecting on synthetic health data opportunities and challenges is timely in the current state of our data-

driven world. In September 2021, the UN High Commissioner for Human Rights called for urgent action

regarding artificial intelligence risks to privacy, stating that ‘‘. filling the immense accountability gap in

how data is collected, stored, shared and used is one of the most urgent human rights questions we

face’’ (OHCHR, 2020). Updating privacy legislation and the development of data and AI regulations are

top priorities for many jurisdictions from the EU ((European Union, 2021)), to the US (Lander, 2021) and Can-

ada ((Canada, Office of the Privacy Commissioner, 2021), (Quebec, National Assembly, 2021), (Ontario,

Ministry of Government and Consumer Services, 2021)). New technological approaches to protecting
Figure 3. Privacy-Utility values for the generation of 3D synthetic PET images

Each value corresponds to a different amount of training iteration of the SDG model. The blue circles correspond to the

average case privacy as described in the text and the red squares correspond to privacy at low (2%) false positive rate MIA.

The privacy values have been resized to fit on the same axis.
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privacy like synthetic data will also require policy and innovation, and clinicians and scientists working in ML

for health applications need to engage with policymakers to ensure they understand both the opportu-

nities and challenges that synthetic data presents for protecting health data privacy. It is important to

define best practices and standards for SDG in collaboration with regulators, privacy officers, and research

ethics boards.

At the same time, we have seen first-hand how the lack of data access and sharing has hampered our ability

to develop real-time monitoring, modeling, and a coordinated public health response to the COVID-19

pandemic by jurisdictions across the world. The impact of the ‘‘privacy chill’’ described by the pan-Cana-

dian Health Data Strategy’s Expert Advisory Group on our ongoing public health crisis has contributed to

the human toll of the pandemic. Beyond local hospitals or even one country doing SDG on their own, there

are various collaborative settings such as (1) multiple countries sending their data to a trusted third party;

and (2) collaborators without a trusted central node having real data exchanged hands.

Given the opportunities that data science and ML provide to leverage data within our health systems to

develop new treatments, deliver better care and reduce costs, there is a strong case for investing in further

research and development of synthetic data approaches. For those approaches to translate into real-world

applications will require extensive discussion, debate and understanding by all those concerned with pre-

serving health data privacy, from scientists to innovators, from peer and ethics review committees, to hos-

pital administrators and data stewards, to privacy commissioners and policymakers. Given everything we

have learned about the lost opportunities with poor data access over the last two years, there is an urgent

need to develop and adopt privacy-enhancing technologies to enable data sharing. Regulations governing

the sharing and reuse of data are only getting stricter and the role of techniques such as SDG will need to

becomemore prominent. An acceleration in developing frameworks for evaluating the utility and privacy of

synthetic data would be a good starting point as that would make it easier to improve SDG methods, and

for data custodians to decide how and when to use them.
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